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Fluctuation-induced collective motion: A single-particle density analysis

Chiu Fan Lee (Z5i#1)*
Max Planck Institute for the Physics of Complex Systems, Nothnitzer Str. 38, 01187 Dresden, Germany
(Received 5 November 2009; revised manuscript received 20 January 2010; published 26 March 2010)

In a system of noisy self-propelled particles with interactions that favor directional alignment, collective
motion will appear if the density of particles increases beyond a certain threshold. In this paper, we argue that
such a threshold may depend also on the profiles of the perturbation in the particle directions. Specifically, we
perform mean-field, linear stability, perturbative, and numerical analyses on an approximated form of the
Fokker-Planck equation describing the system. We find that if an angular perturbation to an initially homoge-
neous system is large in magnitude and highly localized in space, it will be amplified and thus serves as an
indication of the onset of collective motion. Our results also demonstrate that high particle speed promotes

collective motion.
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I. INTRODUCTION

The interesting phenomena of flocking in animals [1-3]
and self-organized patterns in motile cells [4—6] are currently
driving the intense theoretical study of collective motion
(CM) among self-propelled particles [7-17]. In particular, a
comprehensive linear stability analysis on the onset of col-
lective motion from the perspective of Boltzmann equation
has recently appeared [18]. Models for collective motion
usually involve motile particles that possess alignment inter-
actions and angular noise. Collective motion is then observed
if the density of particles increases beyond a certain thresh-
old. Besides density fluctuations, fluctuations in the heading
directions of the particles constitute another important aspect
of the system. Here, we study a minimal model for collective
motion and show that the threshold for collective motion
transition may depend on the profiles of directional fluctua-
tions. Specifically, we find that an initial directional pertur-
bation to a spatially homogeneous system will be amplified,
if the perturbation is large in magnitude and is highly local-
ized in space. We also demonstrate that high particle speed
promotes collective motion.

To achieve our results, we first write down the Fokker-
Planck equation describing the single-particle density distri-
bution of the system in Sec. II. We then investigate in Sec. III
the equation in the Fourier space of the directional compo-
nent, and argue that only the lower order modes are impor-
tant at the onset of collective motion. As a result, the dynam-
ics of the distribution function can be captured by a set of
three nonlinear coupled differential equations, which we sub-
sequently study with linear stability analysis in Sec. IV. In
Sec. V, we go beyond the linear stability regime by investi-
gating the dynamical equations perturbatively and numeri-
cally.

II. MODEL

In this work, we follow [16] and consider a minimal
model for collective motion in two dimensions, where every
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particle is assumed to have constant speed and that their
interactions consist only of directional alignment mecha-
nism. Noise is incorporated in the direction of travel. Spe-
cifically, let there be N particles in a volume of V; their
equations of motion are

dl’i 2u
—=—v(6) (1)
dt
—==—(R,0)+ V2Dt 2
AP CIRRERLID @
where 1=i=N, R=(r,...,ry), O=(6,,...,6y), v(0)

=(cos 6,sin ), and the noise is assumed to be Gaussian
characterized by the following moments:

(1)) =0, () (1)) =66t —1"). (3)

Moreover, the alignment interaction is assumed to be of very
short range and thus can be approximated by a delta func-
tion,

UR,0) == 6, r))cos(6;— ). )

i<j
If we denote the probability distribution of the density of
particles in the state (R,®) at time 7 by f(z,R,0), then the
Fokker-Planck equation corresponding to the system is [19]

a_ > 2
D) {D pr ity [V(ﬁ,-)f]}

i

+ 85 00— rsin(G- ). (5)

i< d6;

Naturally, we are not interested in all the information cap-
tured by f, and we will from now on focus on the single-
particle density function, p,

(N‘)fdrz drNd02 dng(R,®)

p(ry,0)) = (N=1)! . (6)

From Eq. (5), we can express p in terms of the two-particle
density function p®,
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&p(r’ 0) (?zp(l', 0) 2u |: (?p(l‘, 0) . (?P(r, 0)
=D — | cos 8 + sin 6
ot s ™ 9
J
+ E_{J dg’J dr' 8 (r—r")sin(6- )
mTdl
Xp(z)(l‘, 0,1",0’)]. (7)

where

(NY)fdry---drydby - -~ dOyf(R,©)
(N=-2)! '

pP(ry, 0,.15,0,) =

(8)

The above manipulation is akin to the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy formalism [20].
To continue with our analytical treatment, we will ignore the
second ordered correlation and adopt the product distribution
assumption: p?(r,0,r", 0 )=p(r,H)p(r’, ). This assump-
tion is similar to the molecular chaos assumption in the con-
text of Boltzmann equation, and is also adopted in [15,18].

By Fourier transforming the above equation with respect
to the angular variable, 6, we have

3pp(r) == Dn?p,(r) = ul 9 (P41 (r) + p,_y(r))
+10y(P_1 (1) = p41 (1)) ]
= gnp_1(r)p,.1(r) = py(r)p,_; (r)] 9)

where p(r,0)=3"___p,(r)e "’

Since p,(r) are complex, we will denote them by a,(r)
+ib,(r) where a, and b, are real functions. In relation to the
original density function, we have

p(r,0) = 2 [a,(r) +ib,(r)]e™"’

neZl

=ay(r) +2 >, [a,(r)cos(nb) + b,(r)sin(n6)]

n>1
(10)

where for the second equality, the following conditions for

the a,, and b, have been employed:
b,=-b_,, (11)

a,=da_,,

which are due the fact that p is real. Writing Eq. (9) in terms
of the a, and b,, we have for n € Z,

atan == Dnzan - u[’?x(an+l + an—l) - ay(bn—l - bn+1)]

_gn[al(arHl _an—l) +b1(bn—1 +bn+1)] (12)

atbn == Dnzbn - u[ax(blﬁl + bn—l) + ay(an+1 - an—l)]
—gnla (b, = b,_y) = by(@y +a,)]. (13)

Note that the arguments (¢,r) in a, and b, are omitted in the
above equations to ease notation.

III. MEAN-FIELD APPROXIMATION

To avoid having to deal with the above infinite set of
differential equations, we will sort to truncate the number of
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differential equations to be considered. To do so, we first
study the system in a mean-field manner [21]; i.e., we set
p,(t,r)=p, () for all r. Equations (12) and (13) then become

da,

E == Dl’lz(ln - g”[al(an+l - an—l) + bl(bn—l + bn+l)]
(14)

db,

dt = _Dnzbn _gn[al(an - bn—l) - bl(an+l + an—l)]'

(15)

Note that day/dt=0 due to the fact that a, corresponds to the
overall density of the system, which does not change.

Let us assume that the » modes are not excited at =0 and
so we need only focus on the ¢ modes. By inspecting Eq.
(10), we see that the omission of the b modes is the same as
focusing only on angular perturbation of the form cos (6),
i.e., the particles are more likely to be heading in the positive
x direction. With this simplification, the first three modes are
of the form

da
d—tl:gaoal—(Da1+ga1a2) (16)
a
d—::Zga%—(4Da2+ga1a3) (17)
d
f=3ga1a2—(9Da3+ga|a4). (18)

At the onset of CM from a spatially and angularly homoge-
neous system, we expect that |a,| <1 for n>1. Let us define
€ as max,-|a,| at the onset of CM, we see that only da,/dt
is of order € while all the time derivatives for the higher
order modes are of order €. Furthermore, the coefficients
associated with the damping term D for the n-th modes scale
with n?, which further suggests that only the lower order
modes are important. Another corroborating evidence is from
[15,18] where the authors employed their scaling ansatz,
which is supported by their numerical simulations, to argue
that the higher order modes are indeed negligible at the onset
of CM. Based on all these reasons, we will truncate the origi-
nal dynamical equations, Eq. (9), by omitting all p, for n
>2. Focusing again only on the a modes, we have

d(lo
o _ 19
" (19)
da
d—‘ = (- D +gay- ga)a, (20)
1
d
%=—4Da2+2ga$. 1)

A simple fixed-point analysis on the above equations indicate
that the existence of nonzero fixed point for a; and a, is only
possible when
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gag—D > 0. (22)

This condition has previously been derived in [16]. Expect-
edly, the above condition indicates that collective motion is
facilitated by having strong interaction (g), high particle den-
sity (a) and weak noise (D).

IV. LINEAR STABILITY ANALYSIS

We now continue with our truncation approximation, but
with the spatial variable reinstalled into Egs. (14) and (15).
Before we start to analyze the set of differential equations,
we note that by inspecting Egs. (12) and (13), we see that the
a,-; and b,~, modes are coupled exclusively to different
spatial dimensions—the x and y dimensions respectively. In
other words, if the system is initially homogeneous in the x
dimension, then the x dimension will remain homogeneous,
and vice versa. We will therefore, as in the previous section,
assume that the b modes are not excited and focus only on
the @ modes. With this simplification, we arrive at the fol-
lowing dynamical equations:

dee=-2ud B (23)
B=-DB—-ud(a+y)+gBla-1y) (24)
dyy=—4Dy—ud B+2gB%, (25)

where we have used the Greek letters «, B3, and vy to denote
ay, ay, and a,, respectively.

The fixed point in the homogeneous phase corresponds to
a=1, B=0, and y=0 where we have set the unit length in
such a way that the density of the particles is one. We now
perform linear stability analysis on this fixed point by con-
sidering the linear response of the system to a small pertur-
bation of the form

a=1+AeMHi® (26)
B=BeMHeY (27)
y=CeMHe (28)

where A,B,C<1 and ¢ is an arbitrary frequency. Substitut-

ing the above into Egs. (23) and (24) gives the following
condition on \:

AMA+D-g)(\+4D)

3\+8D -

- g, (29)

which indicates that A>0 if and only if g>D. In other
words, we have recovered the condition found in our previ-
ous mean-field analysis [cf. Eq. (22)].

Although this result is consistent with what we found in
the previous section, pieces of the picture at the onset of CM
are still lacking. For instance, the phase-transition condition
found here does not depend on the speed of the particle u.
This is unsatisfactory because we know that long-range order
would not be possible if u=0 [8,9]. Moreover, it is desirable
to see how the coupling between the spatial and temporal
dimension affects the rise of the excited mode B. To gain
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insight in these questions, we will go beyond the linear sta-
bility regime and analyze the dynamical equations with per-
turbative method in the next section.

V. BEYOND LINEAR STABILITY ANALYSIS

In this section, we will study Eqgs. (23)-(25) perturba-
tively. Specifically, we will assume that D,g<<1, in the units
of distance and time set by having a(r=0,x)=1 and u
=1/+/3. Physically, these assumptions amount to limiting our
discussion to the regime where the particles’ angular fluctua-
tions and interaction strength are small. Furthermore, since
we are primarily interested in the dynamics at the onset of
CM, we will assume that g/D is of order unity [cf. Eq. (22)].
These assumptions allow us to employ D (or equivalently, g)
as the expansion parameter in our perturbative treatment. In
contrast to the linear stability analysis in the previous section
where the perturbation magnitude is assumed to be small
enough that the nonlinear term is negligible, the perturbative
approach adopted here allows us to study the effects of the
nonlinear term on the dynamics.

In the aforementioned units, Egs. (23)—(25) are:

2
da== =08 (30)
V3
1
o7tB=—DB——§o7x(a+ Y) +gBla—y) 31)
V
! 2
dy=—4Dy- ’_5(9“84-2&8 . (32)
AY
We now expand « as
a=ay+Da; + O(D?), (33)

and similarly for 8 and 7y. The zeroth order (in D) terms
follow the following differential equations:

2
diag=— =Py (34)

V3

1
3,80 =~ = (ay+ ) (35)
V3
1

v =—"T=Bo- (36)

V3

The above set of differential equations can be solved by em-
ploying the Laplace-Fourier transform method. For the initial
conditions of ay(r=0,x)=1, By(t=0,x)= ée"’z/ 20%) 270,
and y,(¢=0,x)=0. The solutions are

ay=1+ ,;[U_ - U] (37)
Voo
Bo= — U+ U"] (38)
2\2mo
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FIG. 1. The density profiles of «, B and 7y at different times
obtained by numerically solving the set of differential equations in
Egs. (30)-(32), with the following parameters: u=1/v3, and D=g
=¢=0=0.1.

& _
= — -Ut 3
w= 3= U= Ul (39)
where
. (xit)2>
U —exp<— pyea (40)

In other words, a Gaussian perturbation in B at t=0 splits
into two Gaussian distributions traveling in opposite direc-
tions with unit speed (as a result of setting u to 1/v3). The
perturbation also induces in « and 7y two solitary waves in
the form a Gaussian distribution traveling with unit speed in
the positive direction, and an inverted Gaussian density wave
traveling in the opposite direction (cf. Fig. 1). This is akin to
the stripe traveling-wave pattern found in the CM phase
[10,18].

The differential equations governing the first-order terms
are

2
ey =— = (41)
V3
1 g
aB1==PBo— Tgﬁx(al +y)+ l—)ﬂo(ao -v)  (42)
v

1 2g
Iy =—4yy— =B+ =By (43)
V3 D

where a, B), and 7, above are now given by Egs. (37)—(39).
The initial conditions for the above equations are:
a,(r=0,x)=p,(t=0,x)=7y,(t=0,x)=0.

Before we attempt to study the above set of differential
equations, let us look for some meaningful quantities that
quantifies the effect of the initial perturbation. For instance,
the temporal evolution of total increase in B, due to the
initial perturbation can be obtained from Eq. (42),
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a(J dy&(r,y)) =f dy(%a— 1)B=§<%— 1)

(44)

This indicates that when summed over the whole space, the
B mode is amplified only if g>D. This is again consistent
with the result we obtained in Secs. III and IV.

Besides the above quantity, the following two quantities
are also of interest:

A(r) = f‘” dxa(t,x); B(t) = f’” dx[ B(t,x) — B(0,x)].

0 0
(45)

Namely, A and B correspond to the responses in the density
(«) and in the B mode in the direction of the angular pertur-
bation. These are in fact arguably better quantities to con-
sider as they capture the directional nature of the perturba-
tion. From Eq. (42), we have

dB(1) _&g-D) g€ ( ! )
= + fl — 46
dt 2 8\/;70-61‘ o ( )
D
+ fg[a](t,x=0) + ¥ (t,x=0)]. (47)
\J
In the Appendix, we demonstrate that
g& 3
a(t,x=0)+ y(t,x=0) = =51+ O(). (48)
mo?

In other words, up to order O(#%), we have

&g- D)t 5gt2<5>2
—+ (.
2 8\3m

The third term in the right-hand side above highlights the
importance of the term &/ o, especially when D= g. Figures
2(a) and 2(b) display the temporal evolutions of A(r) and B(z)
by solving Egs. (30) and (31) numerically in the case of D
=g. They clearly show the amplification of the initial pertur-
bation, which we have taken as an indication for the onset of
collective motion in longer time. Figure 2(c) demonstrates
that at short time, the dynamics is well described by the
expression in Eq. (49). Furthermore, due to the positive sec-
ond term in the R.H.S. above, the formula for B(r) suggests
that there is a possibility of perturbation amplification even if
D>g, e.g., when &/ o> 1. This is indeed shown to be the
case in Figs. 3(a) and 3(b), where amplification of the per-
turbation is seen for D/g~1.1. In other words, a sharp per-
turbation in the angular domain is able to induce collective
motion even if the density is below the phase-transition
threshold as obtained in the mean-field model.

If we now restore the speed, u, and the initial density, c,
where c=a(r=0,x), into Eq. (49), we have

&cg - D)t 5gut2<§)2
2 i 8w .

B(t)= (49)

(oa

B(t) = (50)

g

Note that the speed of the particles only appears in the sec-
ond term above, which is positive. Hence, the above formula
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FIG. 2. The temporal evolutions of (a) A [cf. Eq. (45)] and (b) B
[cf. Eq. (45)], obtained by numerically solving the set of differential
equations in Egs. (30) and (32), with D=g=§£=0.1. (c) The zoom-in
plot of B(z) at small time with the three curves corresponding to the
theoretical expressions given in Eq. (49).

suggests that the particle speed has a net effect of amplifying
the initial perturbation and thus facilitating collective motion
transition.

As verification on the validity of our approximation
adopted in our analytical calculations, we numerically simu-
late Egs. (12) and (13) with higher order modes included and
find that there are no discernible differences for the param-
eter range investigated in this work (cf. Fig. 4).

VI. CONCLUSION

In summary, starting with a Fokker-Planck equation for a
minimal model of CM, we derived a set of three coupled
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FIG. 3. The temporal evolutions of (a) A [cf. Eq. (45)] and (b) B
[cf. Eq. (45)], obtained by numerically solving the set of differential
equations in Egs. (30) and (32), with g=b=0=0.1. The zoom-in
plot of B(z) at small time with the three curves corresponding to the
theoretical expressions given in Eq. (49).
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FIG. 4. The evolution of B(¢) obtained by numerical simulating
the differential equations Egs. (12) and (13) with the initial condi-
tion discussed in Sec. V. The parameters are g=D=§=0=0.1. In the
simulations, only the Oth to the mth a modes are included. In other
words, we assume that a,~,,=0 and b, .7z=0.

differential equations that describes the system at the onset
of CM. We then studied the equations with mean-field, linear
stability, perturbative, and numerical analyses and found that
if an angular perturbation is large in magnitude and highly
localized in space, it will be amplified and thus serves as an
indication of the onset of collective motion. Our calculations
also demonstrate the importance of particle speed for collec-
tion motion transition. As a result, it is indicative that the
critical point for CM may depend on the speed u, the pertur-
bation magnitude b and the perturbation wavelength o. This
is in contrast to the mean-field and linear stability analyses
where only the hydrodynamic, or infinite-wavelength, mode
dictates the onset of CM. Our results therefore highlight the
importance of incorporating the nonlinear term into the
analysis.

The main limitation of this work is on the approximation
adopted—the omissions of higher order modes. While we
believe that such an approximation is appropriate at the onset
of CM, it would be highly desirable to have a systematic
method to incorporate the higher order modes into the dy-
namics. Besides the consideration of the higher order modes,
singular perturbation method would also be needed to inves-
tigate the long-time behavior of the system [22]. We believe
that these aspects would constitute two promising directions
for future investigation.

APPENDIX: SOLUTIONS OF THE PERTURBATION
PROBLEM TO FIRST ORDER

We are unable to solve the set of differential equations
shown in Eqgs. (41)—(43) analytically. But since only the lead-
ing orders in x and f are of interests, we will replace the U~

in ay, By, ¥ Lcf. Egs. (37)-(39)] by
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Y + 272
17*51—(x_t)+[(x_t)]. (A1)

207 207

With this simplification, the differential equations can be
solved by the Laplace-Fourier transform method and the rel-
evant results are

PHYSICAL REVIEW E 81, 031125 (2010)

—0) = (3 _ _g_§2 3
a,(t,x=0)=0(), v (t,x=0)= 770'2t+ o).

(A2)

[1] 1. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, Nature
(London) 433, 513 (2005).

[2]J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland,
E. R. Miller, and S. J. Simpson, Science 312, 1402 (2006).

[3] D. J. T. Sumpter, Philos. Trans. R. Soc. London, Ser. B 361, 5
(2006).

[4] L. Tsimring, H. Levine, 1. Aranson, E. Ben-Jacob, I. Cohen, O.
Shochet, and W. N. Reynolds, Phys. Rev. Lett. 75, 1859
(1995).

[5] I H. Riedel, K. Kruse, and J. Howard, Science 309, 300
(2005).

[6] E. O. Budrene and H. C. Berg, Nature (London) 349, 630
(1991).

[7] T. Vicsek, A. Czirdk, E. Ben-Jacob, 1. Cohen, and O. Shochet,
Phys. Rev. Lett. 75, 1226 (1995).

[8]J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).

[9] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).

[10] G. Grégoire and H. Chaté, Phys. Rev. Lett. 92, 025702 (2004).

[11] V. Dossetti, F. J. Sevilla, and V. M. Kenkre, Phys. Rev. E 79,
051115 (2009).

[12] P. Romanczuk, 1. D. Couzin, and L. Schimansky-Geier, Phys.
Rev. Lett. 102, 010602 (2009).

[13] M. Aldana, V. Dossetti, C. Huepe, V. M. Kenkre, and H. Lar-
ralde, Phys. Rev. Lett. 98, 095702 (2007).

[14] K. Kruse, J. F. Joanny, F. Jiilicher, J. Prost, and K. Sekimoto,
Phys. Rev. Lett. 92, 078101 (2004).

[15] E. Bertin, M. Droz, and G. Grégoire, Phys. Rev. E 74, 022101
(2006).

[16] F. Peruani, A. Deutsch, and M. Bir, Eur. Phys. J. Spec. Top.
157, 111 (2008).

[17] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S.
Chayes, Phys. Rev. Lett. 96, 104302 (2006).

[18] E. Bertin, M. Droz, and G. Gregoire, J. Phys. A: Math. Theor.
42, 445001 (2009).

[19] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, Oxford, 2001).

[20] K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York,
1987).

[21] Please also see M. Aldana and C. Huepe, J. Stat. Phys. 112,
135 (2003); W. Ebeling, Physica A 314, 92 (2002), and the
references therein for other relevant mean-field results.

[22] See, e.g., C. M. Bender and S. A. Orszag, Advanced Math-
ematical Methods for Scientists and Engineers: Asymptotic
Methods and Perturbation Theory (Springer, New York, 1999).

031125-6



